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Objectives

1. Create a road lidar dataset as a baseline dataset for developing the road elevation model

– Only lidar points on road surface are included

– Organized by counties or by TxDOT maintenance sections

2. For each road shape (polygon or centerline), add the elevation value z to each (x,y) coordinate on the road 
shape: 2D → 2.5D

– Road shape sources: Ecopia, TxDOT road inventory, …

– GIS format: Polygon → Polygon Z; LineString→ LineString Z

• Status

– Project started in May 2023; the Austin District is processed in October 2023

• 3D road shapes are sent to Dr. Maidment (proprietary data, not published)

• Road lidar data:

– By counties: 
https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinCounties_H_epsg6343_V_epsg5703/

– By maintenance sections:  
https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinMaintenanceSections_H_epsg6343_V_epsg
5703/

– Software

• Took longer than expected to develop due to the complexity of lidar data and high-performance computing requirements

• The workflow software is being polished for open source release

https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinCounties_H_epsg6343_V_epsg5703/
https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinMaintenanceSections_H_epsg6343_V_epsg5703/
https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinMaintenanceSections_H_epsg6343_V_epsg5703/
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GIS Processing 
- road lidar construction

1. Load lidar tile

2. Extract ground and bridge points

3. Load road polygons

4. Point-in-polygon (PIP) test for road lidar 
points

• Computational intensity

– Step 4:

num_pip_tests = num_gb_pnts * num_polygons
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GIS Processing
– z interpolation on road shapes

1. Load road lidar tile

2. Load road polygons and centerlines

3. Evenly space each line segment → 
{query_points}

4. For each query point, search 
neighboring lidar points → z sample

– Point-in-polygon tests

5. Interpolate z of the query point from 
the sample

• Computational intensity

– Step 4:

num_pip_tests = num_qp * num_road_lidar_pnts

Shoal Creek and Anderson Ln
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GIS Processing
- radius search for neighboring lidar points

• For each point on a road shape, search for neighboring lidar points within a radius

• Point in polygon/circle search is computationally intensive
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GIS Processing
- z Interpolation Algorithm
• If num of bridge points > num of neighboring points * 15%, use bridge points only

• Iteratively, smooth the sorted (by Z) points if | Zmean – Zmedian | > 1ft:

– If Zmean – Zmin > 2ft, get rid of the first point (w/ min Z)

– If Zmean – Zmin > 2ft, get rid of the last point (w/ max Z)

• Otherwise (not enough points left, or | Zmean – Zmedian | <= 1ft), return Zmean

query 
bbox
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Data Volume and Computing Environment
#units Size Tile extent & size Projection

Central Texas 2017 5811 tiles 608GB ~1.5km x 1.5km; ~15KB-1.8GB (145M 
points)

EPSG:26914, NAD83 / UTM zone 14N
EPSG:6343, NAD83(2011) / UTM zone 14N
EPSG:3721, NAD83(NSRS2007) / UTM zone 14N
EPSG:6369, Mexico ITRF2008 / UTM zone 14N

Bexar-Travis 2021 516 + 3157 = 
3673 tiles

857GB 28cm: ~15ft x 16ft; ~163MB - 1.3GB
50cm: ~5k ft x 5.7k ft; ~11MB - 350MB

EPSG:6578, NAD83(2011) / Texas Central (ftUS)
EPSG:6588, NAD83(2011) / Texas South Central (ftUS)

South Central Texas 2018 528 tiles 30GB ~1.5km x 1.5km; ~40-90MB EPSG:6343, NAD83(2011) / UTM zone 14N

Total 10,012 1.5TB

Ecopia road data: 75,855 polygons, 285,607 centerlines. Projection: EPSG:32614, WGS 84 / UTM zone 14N

High-performance computing environment

• Oak Ridge Research Cloud
• HPC machine specification

• 96 CPU cores, Intel(R) Xeon(R) Platinum 8268 
CPU @ 2.90GHz

• 800GB memory
• 100TB storage
• 4 NVIDIA V100S GPUs
• Network: Globus transfer on high-speed 

network between ORNL and TACC
• Future processing may use TACC Lonestart6
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Computational Strategies

• Define the basic computing element to enable parallel computing paradigms

– Each tile is a basic computing element, not a road polygon or centerline

• To avoid visiting a lidar tiles for multiple times

• Maximize the use of vectorized processing

– CPU: Numpy vectorized operations

– GPU: customized batch processing using Rapids tools (cupy, cudf, cuspatial)
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Assumptions

• Projection

– Each input/output projection has an EPSG number

– Only meter → foot conversion is needed

– Tile processing uses the native projection of the lidar tile → reprojection is needed

• Lidar input

– Ground|bridge classification among different las point formats is exclusive

• No conflict: ground = 2 in point format a and ground = 4 in point format b

• Single output projection

– Horizontal EPSG:6343 (UTM 14N)

– Vertical EPSG:5703 (NAVD88 height)
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Computing Workflow

1. [S] Create R-tree road polygon index

2. [S] Create lidar tileset table with processing priority

3. [PG] Batch-process all lidar tiles for 3D road shape construction

1. [S] Filter road polygons and centerlines in the tile 

2. [G] Crop lidar tile to road tile (point-in-road-polygon tests on GPU)

3. [S] Space road polygons and centerlines; create query points and query bbox

4. [G] Radius search for each query bbox on GPU

5. [S] Z-interpolation for each query point (CPU acceleration via vectorization)

6. [S] Aggregate 3D query points and associate them with road polygon/centerline

4. [PG] check and re-run failed tiles

5. [S] Generate XYZ road polygons and centerlines

6. [P] Reproject road tiles to the output projection using pyproj

7. [PG] Crop overlapping tiles ordered by priority

1. [S] Create tile bbox R-tree

2. [G] For each tile, skip non-overlapping and completely covered tiles; crop intersected tiles

8. [P] Generate copc tiles using untwine

9. [P] Generate road tiles by counties and maintenance sections using lasmerge

10. [P] Cleanup 

S: sequential computing; P: CPU parallel; G: GPU parallel

Step 7:
  6030 non-overlapping
  1111 completely covered
   811 cropped

After the 1st run: 109 failed tiles, 
100 of them are lcra07 old tiles that 
have version 1.0, which is no longer 
supported. Other 9 were caused by GPU 
memory contention, resolved by simply 
re-running them with less parallelism 
(=2).

Step 6-9: road tile processing
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Quadtree Indexing of Road Lidar Points

level 0 quadtree level 1 quadtreepoint data

max_size/quad = 30

cuSpatial code

quadtree data table



1313

Radius Search Using Quadtree

• Intersection of query bounding box and 
quads

– Which quads are to be searched next?

• Point-in-polygon using quadtree

– Test if a lidar point in an intersected quad is 
within the query bounding box
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Technical Exploration for Lidar Point Cropping and Radius 
Search

• PDAL cropping + PCL octree neighborhood search

– Issue: PCL octree search slows down dramatically on large lidar data. Search on the 1.8GB lidar data could not finish 

within 30min

• PDAL cropping

– If the input MultiPolygon is complex, 

PDAL does not produce correct results

– Cropping polygon by polygon + lasmerge 
works, but too slow. 1hr for the 90m-point 

lidar tile covering Shoal Creek and 

Anderson Ln

• Laspy + SciPy cKDTree

– Load lidar points using laspy; build a KD-tree; do radius search

– It works and it is fast (1m for loading data; subseconds for search)

– Issue: it uses a lot of memory (2GB lidar uses 46GB memory). Not practical for parallel computing of 13k lidar tiles

• GPU: cuSpatial point in polygon for cropping

– It’s super fast (a few seconds to load data, subseconds for search)

– cuSpatial is part of NVIDIA RAPIDS

• CUDA memory error when lidar data or polygons are too large
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GPU-Acceleration for 3D Road Shape Processing

• Programmability on GPU in Python

– cupy – numpy

– cudf – pandas

– cuSpatial – shapely

• Not really, but cuSpatial has point-in-polygon 
test and quadtree search

• Vector standard - GeoArrow

– Difficulties

• No memory management support

• New → poor documentation

– Source code reading is necessary

• Code can crash without useful error messages

• Data parallel computing

– Desirable for massive data stream processing

– One GPU card can be shared by multiple 
processes

– Multi-GPU computing model is straightforward 
in our use case

• Embarrassingly parallel

image source: https://www.servethehome.com/inspur-nf5488m5-review-a-unique-8x-nvidia-tesla-v100-server/

Accelerated Solution CPU/GPU alternatives

Find road 
shapes in lidar 
tile

• R-tree search (CPU, 
<1s)

Efficiency: 99.99%

Too slow without 
indexing

Road lidar 
cropping

• laspy filter (CPU, 
1.3s)

• point-in-polygon 
(GPU, 2.4s)

pdal pipeline (CPU, 
3m)
- cannot handle 
complex polygons

Radius search • quadtree search 
(GPU, 5.4s, 0.4GB 
GPU mem)

• search result 
aggregation (CPU, 
0.5s)

• KDtree search (CPU, 
4.8s, 46GB mem)

• PCL Octree C++: not 
scalable

• aggregation via 
pandas (5m34s)

• aggregation on GPU 
(>10m)

Z interpolation numpy vectorization 
(CPU, 0.6s)

numpy iteration (CPU, 
4.2s)

Benchmark data: 90m lidar points
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GPU Batch Processing

• cuSpatial limitations

– GPU memory limitation on how many lidar points can 
be quadtree-indexed at a time

– Point-in-polygon search for multiple query bounding 
boxes is supported, but GPU memory limits how many 
query points can be served at a time 

• Batch processing of radius search

– Batch construction for both lidar points and query 
bounding boxes

• Quadtree search on a batch of lidar points generates 
generates a subset of lidar points within the radius. 
Aggregation needed to get the final result

– Pseudo code

• for each batch of lidar points

– construct quadtree

– for each batch of query bboxes
• intersect bboxes and quads
• point-in-polygon test for each lidar 

point in intersected quads

• For each query point

– aggregate lidar points within the radius
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Austin District Output

• Road lidar dataset

– 3.85 billion points

• Road shape datasets

– 3D LineString Z: 285,558 / 285,607 

– 3D Polygon Z: 75,833 / 75,855

computing 4 GPUs, parallelism/gpu=6

road shape R-tree indexing 6 minutes

10,012 lidar tiles skipped: 2060 (Bexar tiles)
processed: 7952
success: 7843
failed: 109
• 3: GPU quadtree search error
• 6: GPU memory access error
• 100: old lcra0 las V1.0 not 

supported

tile computing time 3 hours 20 minutes
GPU parallelism: 6

rerun of failed tiles success: 109, time: 12 minutes
GPU parallelism: 1

road shapes aggregation 8 minutes 32 seconds

road lidar aggregation 3 hours (to double check)

Computational PerformanceResults: 3D Road Shapes
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Statistics 

• 230 billion lidar points in 7,952 lidar 
tiles are scanned

• 3.86 billion road lidar points are 
extracted

• 1.96 trillion point-in-polygon tests
• point-in-polygon tests after R-

tree search for tile-road 
polygon intersection

• road lidar has 1.67% of original 
lidar points, on average

• number of radius search operations 
w/o quadtree
• 369,015 trillion
• quadtree search significantly 

reduced this number
• 95.6 million Z values are added to 

road centerlines and polygons
• evenly spaced. more points 

than in the original Ecopia data

road polygons for cropping - total: 129,940 , mean: 16.34 , max: 89

query points on road shapes - total: 95,663,563 , mean: 12,030.13 , max: 98,152

lidar points         - total: 230,420,449,907 , mean: 28,976,414.73 , max: 163,961,040 
ground/bridge points - total: 112,709,640,901 , mean: 14,173,747.6 , max: 103,955,779 
road points          - total: 3,857,431,762 , mean: 485,089.51, max: 9,888,605
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Results: road lidar points for the Austin District

• By counties:

– https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinCounties_H_epsg6343_V_epsg5703/ 

• By maintenance sections:

– https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinMaintenanceSections_H_epsg6343_V_epsg5703/ 

https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinCounties_H_epsg6343_V_epsg5703/
https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinMaintenanceSections_H_epsg6343_V_epsg5703/
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Results: road lidar points for the Austin District - copc

• All the road lidar tiles have the copc version

• Loadable and viewable on https://viewer.copc.io/ 

https://viewer.copc.io/
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Summary: Lidar Data Processing Issues

• Incorrect projection information encoding in las

– "PDAL: readers.las: Global encoding WKT flag not set for point format 6 - 10."

– Solution

• Input handling: find WKT info. in metadata

• Output handling: header info may be carried over to output las. Explicitly override header info.

• Las version 1.0 in some lidar tiles in the LCRA lidar collections is no longer supported

– "laspy.errors.FileVersionNotSupported: 1.0"

– Solution: upgrade to version 1.1 in writing the road lidar tile 

• Misclassification of road surface points

– Current filtering rule: ground (2), bridge (17), and culvert (13 and 14). Some bridge areas may 
be classified as other classes or “Other”
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Conclusion and Discussions

• GPU-acceleration made the computation of the Austin District feasible

• Scaling to all 25 TxDOT districts using the same computing environment is feasible (~200 
hours)

• Road tiles can be contributed back to each participating lidar data collection

• Road tiles are published

– 3D road shapes are proprietary data

• Next steps

– Processing for all the districts

– Road surface geometry fitting using road tiles

– …
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Backup slides
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Road lidar points for Austin District overlaid with lidar tile extents
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(a) Lidar data coverage (b) Road lidar data product

(c) Road lidar details (c) 3-D view of road lidar
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