
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

GPU-Accelerated Scalable Geocomputation for Large-Scale
Lidar-derived Road Elevation Models

Yan Liu, Ph.D.

Computational Scientist

Computational Sciences and Engineering Division

Oak Ridge National Laboratory

33

Objectives

1. Create a road lidar dataset as a baseline dataset for developing the road elevation model

– Only lidar points on road surface are included

– Organized by counties or by TxDOT maintenance sections

2. For each road shape (polygon or centerline), add the elevation value z to each (x,y) coordinate on the road
shape: 2D → 2.5D

– Road shape sources: Ecopia, TxDOT road inventory, …

– GIS format: Polygon → Polygon Z; LineString→ LineString Z

• Status

– Project started in May 2023; the Austin District is processed in October 2023

• 3D road shapes are sent to Dr. Maidment (proprietary data, not published)

• Road lidar data:

– By counties:
https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinCounties_H_epsg6343_V_epsg5703/

– By maintenance sections:
https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinMaintenanceSections_H_epsg6343_V_epsg
5703/

– Software

• Took longer than expected to develop due to the complexity of lidar data and high-performance computing requirements

• The workflow software is being polished for open source release

https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinCounties_H_epsg6343_V_epsg5703/
https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinMaintenanceSections_H_epsg6343_V_epsg5703/
https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinMaintenanceSections_H_epsg6343_V_epsg5703/

44

GIS Processing
- road lidar construction

1. Load lidar tile

2. Extract ground and bridge points

3. Load road polygons

4. Point-in-polygon (PIP) test for road lidar
points

• Computational intensity

– Step 4:

num_pip_tests = num_gb_pnts * num_polygons

55

GIS Processing
– z interpolation on road shapes

1. Load road lidar tile

2. Load road polygons and centerlines

3. Evenly space each line segment →
{query_points}

4. For each query point, search
neighboring lidar points → z sample

– Point-in-polygon tests

5. Interpolate z of the query point from
the sample

• Computational intensity

– Step 4:

num_pip_tests = num_qp * num_road_lidar_pnts

Shoal Creek and Anderson Ln

66

GIS Processing
- radius search for neighboring lidar points

• For each point on a road shape, search for neighboring lidar points within a radius

• Point in polygon/circle search is computationally intensive

77

GIS Processing
- z Interpolation Algorithm
• If num of bridge points > num of neighboring points * 15%, use bridge points only

• Iteratively, smooth the sorted (by Z) points if | Zmean – Zmedian | > 1ft:

– If Zmean – Zmin > 2ft, get rid of the first point (w/ min Z)

– If Zmean – Zmin > 2ft, get rid of the last point (w/ max Z)

• Otherwise (not enough points left, or | Zmean – Zmedian | <= 1ft), return Zmean

query
bbox

88

Data Volume and Computing Environment
#units Size Tile extent & size Projection

Central Texas 2017 5811 tiles 608GB ~1.5km x 1.5km; ~15KB-1.8GB (145M
points)

EPSG:26914, NAD83 / UTM zone 14N
EPSG:6343, NAD83(2011) / UTM zone 14N
EPSG:3721, NAD83(NSRS2007) / UTM zone 14N
EPSG:6369, Mexico ITRF2008 / UTM zone 14N

Bexar-Travis 2021 516 + 3157 =
3673 tiles

857GB 28cm: ~15ft x 16ft; ~163MB - 1.3GB
50cm: ~5k ft x 5.7k ft; ~11MB - 350MB

EPSG:6578, NAD83(2011) / Texas Central (ftUS)
EPSG:6588, NAD83(2011) / Texas South Central (ftUS)

South Central Texas 2018 528 tiles 30GB ~1.5km x 1.5km; ~40-90MB EPSG:6343, NAD83(2011) / UTM zone 14N

Total 10,012 1.5TB

Ecopia road data: 75,855 polygons, 285,607 centerlines. Projection: EPSG:32614, WGS 84 / UTM zone 14N

High-performance computing environment

• Oak Ridge Research Cloud
• HPC machine specification

• 96 CPU cores, Intel(R) Xeon(R) Platinum 8268
CPU @ 2.90GHz

• 800GB memory
• 100TB storage
• 4 NVIDIA V100S GPUs
• Network: Globus transfer on high-speed

network between ORNL and TACC
• Future processing may use TACC Lonestart6

99

Computational Strategies

• Define the basic computing element to enable parallel computing paradigms

– Each tile is a basic computing element, not a road polygon or centerline

• To avoid visiting a lidar tiles for multiple times

• Maximize the use of vectorized processing

– CPU: Numpy vectorized operations

– GPU: customized batch processing using Rapids tools (cupy, cudf, cuspatial)

1010

Assumptions

• Projection

– Each input/output projection has an EPSG number

– Only meter → foot conversion is needed

– Tile processing uses the native projection of the lidar tile → reprojection is needed

• Lidar input

– Ground|bridge classification among different las point formats is exclusive

• No conflict: ground = 2 in point format a and ground = 4 in point format b

• Single output projection

– Horizontal EPSG:6343 (UTM 14N)

– Vertical EPSG:5703 (NAVD88 height)

1111

Computing Workflow

1. [S] Create R-tree road polygon index

2. [S] Create lidar tileset table with processing priority

3. [PG] Batch-process all lidar tiles for 3D road shape construction

1. [S] Filter road polygons and centerlines in the tile

2. [G] Crop lidar tile to road tile (point-in-road-polygon tests on GPU)

3. [S] Space road polygons and centerlines; create query points and query bbox

4. [G] Radius search for each query bbox on GPU

5. [S] Z-interpolation for each query point (CPU acceleration via vectorization)

6. [S] Aggregate 3D query points and associate them with road polygon/centerline

4. [PG] check and re-run failed tiles

5. [S] Generate XYZ road polygons and centerlines

6. [P] Reproject road tiles to the output projection using pyproj

7. [PG] Crop overlapping tiles ordered by priority

1. [S] Create tile bbox R-tree

2. [G] For each tile, skip non-overlapping and completely covered tiles; crop intersected tiles

8. [P] Generate copc tiles using untwine

9. [P] Generate road tiles by counties and maintenance sections using lasmerge

10. [P] Cleanup

S: sequential computing; P: CPU parallel; G: GPU parallel

Step 7:
 6030 non-overlapping
 1111 completely covered
 811 cropped

After the 1st run: 109 failed tiles,
100 of them are lcra07 old tiles that
have version 1.0, which is no longer
supported. Other 9 were caused by GPU
memory contention, resolved by simply
re-running them with less parallelism
(=2).

Step 6-9: road tile processing

1212

Quadtree Indexing of Road Lidar Points

level 0 quadtree level 1 quadtreepoint data

max_size/quad = 30

cuSpatial code

quadtree data table

1313

Radius Search Using Quadtree

• Intersection of query bounding box and
quads

– Which quads are to be searched next?

• Point-in-polygon using quadtree

– Test if a lidar point in an intersected quad is
within the query bounding box

1414

Technical Exploration for Lidar Point Cropping and Radius
Search

• PDAL cropping + PCL octree neighborhood search

– Issue: PCL octree search slows down dramatically on large lidar data. Search on the 1.8GB lidar data could not finish

within 30min

• PDAL cropping

– If the input MultiPolygon is complex,

PDAL does not produce correct results

– Cropping polygon by polygon + lasmerge
works, but too slow. 1hr for the 90m-point

lidar tile covering Shoal Creek and

Anderson Ln

• Laspy + SciPy cKDTree

– Load lidar points using laspy; build a KD-tree; do radius search

– It works and it is fast (1m for loading data; subseconds for search)

– Issue: it uses a lot of memory (2GB lidar uses 46GB memory). Not practical for parallel computing of 13k lidar tiles

• GPU: cuSpatial point in polygon for cropping

– It’s super fast (a few seconds to load data, subseconds for search)

– cuSpatial is part of NVIDIA RAPIDS

• CUDA memory error when lidar data or polygons are too large

1515

GPU-Acceleration for 3D Road Shape Processing

• Programmability on GPU in Python

– cupy – numpy

– cudf – pandas

– cuSpatial – shapely

• Not really, but cuSpatial has point-in-polygon
test and quadtree search

• Vector standard - GeoArrow

– Difficulties

• No memory management support

• New → poor documentation

– Source code reading is necessary

• Code can crash without useful error messages

• Data parallel computing

– Desirable for massive data stream processing

– One GPU card can be shared by multiple
processes

– Multi-GPU computing model is straightforward
in our use case

• Embarrassingly parallel

image source: https://www.servethehome.com/inspur-nf5488m5-review-a-unique-8x-nvidia-tesla-v100-server/

Accelerated Solution CPU/GPU alternatives

Find road
shapes in lidar
tile

• R-tree search (CPU,
<1s)

Efficiency: 99.99%

Too slow without
indexing

Road lidar
cropping

• laspy filter (CPU,
1.3s)

• point-in-polygon
(GPU, 2.4s)

pdal pipeline (CPU,
3m)
- cannot handle
complex polygons

Radius search • quadtree search
(GPU, 5.4s, 0.4GB
GPU mem)

• search result
aggregation (CPU,
0.5s)

• KDtree search (CPU,
4.8s, 46GB mem)

• PCL Octree C++: not
scalable

• aggregation via
pandas (5m34s)

• aggregation on GPU
(>10m)

Z interpolation numpy vectorization
(CPU, 0.6s)

numpy iteration (CPU,
4.2s)

Benchmark data: 90m lidar points

1616

GPU Batch Processing

• cuSpatial limitations

– GPU memory limitation on how many lidar points can
be quadtree-indexed at a time

– Point-in-polygon search for multiple query bounding
boxes is supported, but GPU memory limits how many
query points can be served at a time

• Batch processing of radius search

– Batch construction for both lidar points and query
bounding boxes

• Quadtree search on a batch of lidar points generates
generates a subset of lidar points within the radius.
Aggregation needed to get the final result

– Pseudo code

• for each batch of lidar points

– construct quadtree

– for each batch of query bboxes
• intersect bboxes and quads
• point-in-polygon test for each lidar

point in intersected quads

• For each query point

– aggregate lidar points within the radius

1717

Austin District Output

• Road lidar dataset

– 3.85 billion points

• Road shape datasets

– 3D LineString Z: 285,558 / 285,607

– 3D Polygon Z: 75,833 / 75,855

computing 4 GPUs, parallelism/gpu=6

road shape R-tree indexing 6 minutes

10,012 lidar tiles skipped: 2060 (Bexar tiles)
processed: 7952
success: 7843
failed: 109
• 3: GPU quadtree search error
• 6: GPU memory access error
• 100: old lcra0 las V1.0 not

supported

tile computing time 3 hours 20 minutes
GPU parallelism: 6

rerun of failed tiles success: 109, time: 12 minutes
GPU parallelism: 1

road shapes aggregation 8 minutes 32 seconds

road lidar aggregation 3 hours (to double check)

Computational PerformanceResults: 3D Road Shapes

1818

Statistics

• 230 billion lidar points in 7,952 lidar
tiles are scanned

• 3.86 billion road lidar points are
extracted

• 1.96 trillion point-in-polygon tests
• point-in-polygon tests after R-

tree search for tile-road
polygon intersection

• road lidar has 1.67% of original
lidar points, on average

• number of radius search operations
w/o quadtree
• 369,015 trillion
• quadtree search significantly

reduced this number
• 95.6 million Z values are added to

road centerlines and polygons
• evenly spaced. more points

than in the original Ecopia data

road polygons for cropping - total: 129,940 , mean: 16.34 , max: 89

query points on road shapes - total: 95,663,563 , mean: 12,030.13 , max: 98,152

lidar points - total: 230,420,449,907 , mean: 28,976,414.73 , max: 163,961,040
ground/bridge points - total: 112,709,640,901 , mean: 14,173,747.6 , max: 103,955,779
road points - total: 3,857,431,762 , mean: 485,089.51, max: 9,888,605

1919

Results: road lidar points for the Austin District

• By counties:

– https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinCounties_H_epsg6343_V_epsg5703/

• By maintenance sections:

– https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinMaintenanceSections_H_epsg6343_V_epsg5703/

https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinCounties_H_epsg6343_V_epsg5703/
https://web.corral.tacc.utexas.edu/nfiedata/road3d/austin_district/AustinMaintenanceSections_H_epsg6343_V_epsg5703/

2020

Results: road lidar points for the Austin District - copc

• All the road lidar tiles have the copc version

• Loadable and viewable on https://viewer.copc.io/

https://viewer.copc.io/

2121

Summary: Lidar Data Processing Issues

• Incorrect projection information encoding in las

– "PDAL: readers.las: Global encoding WKT flag not set for point format 6 - 10."

– Solution

• Input handling: find WKT info. in metadata

• Output handling: header info may be carried over to output las. Explicitly override header info.

• Las version 1.0 in some lidar tiles in the LCRA lidar collections is no longer supported

– "laspy.errors.FileVersionNotSupported: 1.0"

– Solution: upgrade to version 1.1 in writing the road lidar tile

• Misclassification of road surface points

– Current filtering rule: ground (2), bridge (17), and culvert (13 and 14). Some bridge areas may
be classified as other classes or “Other”

2222

Conclusion and Discussions

• GPU-acceleration made the computation of the Austin District feasible

• Scaling to all 25 TxDOT districts using the same computing environment is feasible (~200
hours)

• Road tiles can be contributed back to each participating lidar data collection

• Road tiles are published

– 3D road shapes are proprietary data

• Next steps

– Processing for all the districts

– Road surface geometry fitting using road tiles

– …

2323

Acknowledgements

This work is sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge
National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-
00OR22725. The research used resources from the Oak Ridge Leadership Computing Facility, which is a DOE Office
of Science User Facility, as well as the CADES Compute and Data Resources and the Oak-Ridge Research Cloud
(ORC) at Oak Ridge National Laboratory.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

2424

Backup slides

2525

Road lidar points for Austin District overlaid with lidar tile extents

2626

(a) Lidar data coverage (b) Road lidar data product

(c) Road lidar details (c) 3-D view of road lidar

	Slide 1: GPU-Accelerated Scalable Geocomputation for Large-Scale Lidar-derived Road Elevation Models
	Slide 3: Objectives
	Slide 4: GIS Processing - road lidar construction
	Slide 5: GIS Processing – z interpolation on road shapes
	Slide 6: GIS Processing - radius search for neighboring lidar points
	Slide 7: GIS Processing - z Interpolation Algorithm
	Slide 8: Data Volume and Computing Environment
	Slide 9: Computational Strategies
	Slide 10: Assumptions
	Slide 11: Computing Workflow
	Slide 12: Quadtree Indexing of Road Lidar Points
	Slide 13: Radius Search Using Quadtree
	Slide 14: Technical Exploration for Lidar Point Cropping and Radius Search
	Slide 15: GPU-Acceleration for 3D Road Shape Processing
	Slide 16: GPU Batch Processing
	Slide 17: Results: 3D Road Shapes
	Slide 18: Statistics
	Slide 19: Results: road lidar points for the Austin District
	Slide 20: Results: road lidar points for the Austin District - copc
	Slide 21: Summary: Lidar Data Processing Issues
	Slide 22: Conclusion and Discussions
	Slide 23
	Slide 24: Backup slides
	Slide 25: Road lidar points for Austin District overlaid with lidar tile extents
	Slide 26

